题目内容

【题目】如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OA交圆O于点F,则∠CBF等于(
A.12.5°
B.15°
C.20°
D.22.5°

【答案】B
【解析】解:∵四边形ABCO是平行四边形, ∴AB=BC,OA∥BC.
∵OA=OC,
∴△OAB是等边三角形,
∴∠AOB=60°.
∵OF⊥OA,
∴∠AOF=90°,OF⊥BC,
∴∠BOF=∠COF=90°﹣60°=30°,
∴∠CBF= ∠COF=15°.
故选B.
【考点精析】通过灵活运用平行四边形的性质和垂径定理,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网