题目内容

【题目】探究函数y=x+ 的图象与性质
(1)函数y=x+ 的自变量x的取值范围是
(2)下列四个函数图象中,函数y=x+ 的图象大致是

(3)对于函数y=x+ ,求当x>0时,y的取值范围.
请将下面求解此问题的过程补充完整:
解:∵x>0
∴y=x+
=( 2+( 2
=( 2+
∵( 2≥0,
∴y
(4)若函数y= ,则y的取值范围是

【答案】
(1)x≠0
(2)C
(3)6;≥6
【拓展运用】
(4)y≤﹣11或y≥1
【解析】解:(1)∵在y=x+ 中,x≠0,
∴x的取值范围是x≠0.
所以答案是:x≠0.(2)∵x≠0,
∴A中图象不符合题意;
∵当x>0时,x+ >0,
当x<0时,x+ <0,
∴函数y=x+ 的图象在第一、三象限,
∴B、D中图象不符合题意,
故选C.(3)解:∵x>0,
∴y=x+
=( 2+( 2
=( 2+6,
∵( 2≥0,
∴y≥6.
所以答案是:6;≥6.(4)y= =x+ ﹣5.
由(3)可知:当x>0时,x+ ≥6;
当x<0时,x+ ≤﹣6.
∴y=x+ ﹣5≥6﹣5=1,y=x+ ﹣5≤﹣6﹣5=﹣11.
y的取值范围是y≤﹣11或y≥1.
所以答案是:y≤﹣11或y≥1.
【考点精析】根据题目的已知条件,利用反比例函数的性质的相关知识可以得到问题的答案,需要掌握性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网