题目内容

【题目】如图,四边形ABCD内接于⊙O,点E在CB的延长线上,连接AC,AE,∠ACB=∠BAE=45°

(1)求证:AE是⊙O的切线;
(2)若 AB=AD,AC=2 ,tan∠ADC=3,求CD的长.

【答案】
(1)

证明:

连接OA、OB,如图1所示:

∵∠ACB=45°,

∴∠AOB=2∠ACB=90°,

∵OA=OB,

∴∠OAB=∠OBA=45°,

∵∠BAE=45°,

∴∠OAE=∠OAB+∠BAE=90°,

∴AE⊥OA,

∴AE是⊙O的切线


(2)

解:

作AF⊥CD于F,如图2所示:

∵AB=AD,

∴∠ACB=∠ACD=45°,

∵AF⊥CD,

∴∠AFC=∠AFD=90°,

∵AC=2

∴在Rt△AFC中,AF=CF=ACsin∠ACF=2 × =2,

∵在Rt△AFD中,tan∠ADC= =3,

∴DF=

∴CD=CF+DF=2+ =


【解析】(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)作AF⊥CD于F,证出 ,由圆周角定理得出∠ACB=∠ACD=45°,由三角函数求出AF=CF=ACsin∠ACF=2,DF= ,即可得出CD的长.
【考点精析】认真审题,首先需要了解切线的判定定理(切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网