题目内容
【题目】某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.
(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.
(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.
【答案】(1)y=-100x+10000;(2)共有四种采购方案:①甲型电脑12台,乙型电脑8台,②甲型电脑13台,乙型电脑7台,③甲型电脑14台,乙型电脑6台,④甲型电脑15台,乙型电脑5台,采购甲型电脑12台,乙型电脑8台时商店获得最大利润,最大利润是8800元.
【解析】
(1)根据利润等于每台电脑的利润乘以台数列得函数关系式即可;
(2)根据题意列不等式组,求出解集,根据解集即可得到四种采购方案,由(1)的函数关系式得到当x取最小值时,y有最大值,将x=12代入函数解析式求出结果即可.
(1)由题意得:y=(2000-1600)x+(3000-2500)(20-x)=-100x+10000,
∴全部售出后该商店获利y与x之间函数表达式为y=-100x+10000;
(2)由题意得: ,
解得,
∵x为正整数,
∴x=12、13、14、15,
共有四种采购方案:
①甲型电脑12台,乙型电脑8台,
②甲型电脑13台,乙型电脑7台,
③甲型电脑14台,乙型电脑6台,
④甲型电脑15台,乙型电脑5台,
∵y=-100x+10000,且-100<0,
∴y随x的增大而减小,
∴当x取最小值时,y有最大值,
即x=12时,y最大值=,
∴采购甲型电脑12台,乙型电脑8台时商店获得最大利润,最大利润是8800元.
【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) | 10 | 11 | 13 |
销售量y(kg) |
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
【题目】如图,一次函数的图象与反比例函数(为常数且)的图象相交于,两点.
(1)求反比例函数的表达式;
(2)将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求的值.
【题目】通过课本上对函数的学习,我们积累了一定的经验,下表是一个函数的自变量与函数值的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:
… | 0 | 1 | 2 | 3 | 4 | 5 | … | |
… | 6 | 3 | 2 | 1.5 | 1.2 | 1 | … |
(1)当 时,;
(2)根据表中数值描点,并画出函数图象;
(3)观察画出的图象,写出这个函数的一条性质: .