题目内容
【题目】在⊙O中,AB为直径,点C为圆上一点,将劣弧 沿弦AC翻折交AB于点D,连结CD.
(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;
(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.
【答案】
(1)解:如图,过点O作OE⊥AC于E,
则AE= AC= ×2=1,
∵翻折后点D与圆心O重合,
∴OE= r,
在Rt△AOE中,AO2=AE2+OE2,
即r2=12+( r)2,
解得r=
(2)解:连接BC,
∵AB是直径,
∴∠ACB=90°,
∵∠BAC=25°,
∴∠B=90°﹣∠BAC=90°﹣25°=65°,
根据翻折的性质, 所对的圆周角为∠B, 所对的圆周角为∠ADC,
∴∠ADC+∠B=180°,
∴∠B=∠CDB=65°,
∴∠DCA=∠CDB﹣∠A=65°﹣25°=40°.
【解析】(1)过点O作OE⊥AC于E,根据垂径定理可得AE= AC,再根据翻折的性质可得OE= r,然后在Rt△AOE中,利用勾股定理列式计算即可得解;(2)连接BC,根据直径所对的圆周角是直角求出∠ACB,根据直角三角形两锐角互余求出∠B,再根据翻折的性质得到 所对的圆周角,然后根据∠ACD等于 所对的圆周角减去 所对的圆周角,计算即可得解.
【考点精析】解答此题的关键在于理解含30度角的直角三角形的相关知识,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,以及对垂径定理的理解,了解垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
练习册系列答案
相关题目