题目内容
【题目】(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E.求证:DE=BD+CE;
(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a,其中a为任意锐角或钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由;
(3)如图3,在(2)的条件下,若a=120°,且△ACF为等边三角形,试判断△DEF的形状,并说明理由.
【答案】(1)见解析;(2)见解析;(3)△DEF为等边三角形。
【解析】
(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案;
(3)证△BDF≌△AEF,得出DF=EF,∠BFD=∠AFE,而得出∠DFE=60°,即可推出△DEF为等边三角形.
证明:(1)∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中,
∵,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中,
∵,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.
(3)△DEF为等边三角形,理由如下:
由(2)知△ADB≌△CEA,BD=AE,∠DBA=∠CAE,
∵△ACF为等边三角形,
∴∠CAF=60°,AF=AC,
又∵AB=AC,
∴AB=AF,
∵∠BAC=120°,
∴∠BAF=60°,
∴△ABF是等边三角形,
∴∠ABF=60°,BF=AF,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠EAF,
∵BF=AF,
∴△BDF≌△AEF(AAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF为等边三角形.