题目内容
【题目】如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形.若显示屏AO与键盘BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,且PD⊥AO(此时点P为最佳视角),点C在OB的延长线上,PC⊥BC,BC=12cm.
(1)当PA=45cm时,求PC的长;
(2)当∠AOC=115°时,线段PC的长比(1)中线段PC的长是增大还是减小?请通过计算说明.(结果精确到0.1cm,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47).
【答案】(1)27 (2)增大
【解析】
(1)当PA=45cm时,连接PO,利用勾股定理求出PC;
(2)当∠AOC=115°时,过点D作DE⊥OC交BO的延长线于E,过点D作DF⊥PC,垂足为F,利用锐角三角函数分别求出FC、PF即可得到答案.
解:(1)当PA=45cm时,连接PO,
∵D为AO的中点,当PD⊥AO,
∴PO=45cm.
∵BO=24cm,BC=12cm,∠C=90°,
∴OC=OB+BC=36cm,PC==27cm;
(2)当∠AOC=115°时,过点D作DE⊥OC交BO的延长线于E,过点D作DF⊥PC,垂足为F,
∴四边形DECF是矩形,
在Rt△DOE中,
∵∠AOE=65°,DO=AO=12,
∴DE=DOsin65°=12×0.91=10.92,EO=DO cos65°=12×0.42=5.04,
∴FC=DE=10.92,DF=EC=EO+BO+BC=5.04+24+12=41.04,
在Rt△PDF中,
∵∠PDF=25°,
∴PF=DFtan25°=41.04×0.47=19.29,
∴PC=PF+FC=19.29+10.92=30.2>27.
故线段PC长是增大了.