搜索
题目内容
平面直角坐标系xOy中,已知点A(2,0),点B(-4,0),直线l经过点A且与x轴垂直.若点B关于y轴的对称点是B
1
,点B
1
关于直线l的对称点是B
2
,则点B
2
的坐标是
(-2,0)
(-2,0)
.
试题答案
相关练习册答案
分析:
根据网格结构找出点B关于y轴的对称点B1,再找出点B
1
关于直线l的对称点B
2
的位置,然后写出坐标即可.
解答:
解:如图所示,B
2
(-2,0).
故答案为:(-2,0).
点评:
本题考查了坐标与图形变化-对称,熟练掌握数轴与网格结构,准确确定出对称点的位置是解题的关键.
练习册系列答案
应用题天天练东北师范大学出版社系列答案
应用题天天练四川大学出版社系列答案
全国中考试题分类精选系列答案
初中学业考试指导系列答案
练习册吉林出版集团有限责任公司系列答案
英语同步听力系列答案
初中英语听力系列答案
单元测试卷齐鲁书社系列答案
中考导学案系列答案
中考大提速系列答案
相关题目
如图,已知在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
m
x
(m≠0)的图象相交于A、B两点,且点B的纵坐标为-
1
2
,过点A作AC⊥x轴于点C,AC=1,OC=2.
求:(1)求反比例函数的解析式;
(2)求一次函数的解析式.
在平面直角坐标系xOy中,△AOB的位置如图所示,已知∠AOB=
90°,∠A=60°,点A的坐标为(
-
3
,1).
求:(1)点B的坐标;
(2)图象经过A、O、B三点的二次函数的解析式和这个函数图象的顶点坐标.
如图(1),将Rt△AOB放置在平面直角坐标系xOy中,∠A=90°,∠AOB=60°,OB=
2
3
,斜边OB在x轴的正半轴上,点A在第一象限,∠AOB的平分线OC交AB于C.动点P从点B出发沿折线BC-CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线CO-Oy以相同的速度运动,当点P到达点O时P、Q同时停止运动.
(1)OC、BC的长;
(2)设△CPQ的面积为S,求S与t的函数关系式;
(3)当P在OC上、Q在y轴上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.
如图,已知平面直角坐标系xOy中,点A(2,m),B(-3,n)为两动点,其中m>1,连接O
A,OB,OA⊥OB,作BC⊥x轴于C点,AD⊥x轴于D点.
(1)求证:mn=6;
(2)当S
△AOB
=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S
△POF
:S
△QOF
=1:2?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.
(2013•河东区一模)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P、Q同时出发,同时停止,设运动时间为t秒,当t=2秒时
PQ=2
5
.
(Ⅰ)求点D的坐标,并直接写出t的取值范围;
(Ⅱ)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.
(Ⅲ)在(Ⅱ)的条件下,t为何值时,PQ∥AF?
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案