题目内容
【题目】如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足为E.若线段AE=2,则四边形ABCD的面积是_____.
【答案】4
【解析】
过点A作AF⊥AE,交CD的延长线于点F,由题意可证△ABE≌△ADF,可得AE=AF,则可证四边形AECF是正方形,四边形ABCD的面积=正方形AECF的面积=4.
解:过点A作AF⊥AE,交CD的延长线于点F
∵∠BAD=∠C=90°,AE⊥BC,AE⊥AF
∴四边形AECF是矩形
∴∠F=90°
∵AE⊥AF,BA⊥AD
∴∠BAE+∠DAE=90°,∠DAF+∠DAE=90°
∴∠BAE=∠DAF
又∵AB=AD,∠F=∠AEB=90°
∴△ADF≌△ABE
∴AF=AE,S△ADF=S△ABE.
∴四边形AECF是正方形.
∴S正方形AECF==4
∵S四边形ABCD=S△ABE+S四边形AECD=S△ADF+S四边形AECD.
∴S四边形ABCD=S正方形AECF=4
故答案为:4
练习册系列答案
相关题目