题目内容
【题目】如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是( )
A. 2 B. C. D.
【答案】B
【解析】
连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD 与BC间的位置关系,根据平行线分线段成比例定理,得结论.
连接OD
∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,
∴OD⊥AC
在Rt△AOD中,∵∠A=30°,AD=2,
∴OD=OB=2,AO=4,
∴∠ODB=∠OBD,又∵BD平分∠ABC,
∴∠OBD=∠CBD,
∴∠ODB=∠CBD,
∴OD∥CB,
∴,即,
∴CD=.
故选B.
练习册系列答案
相关题目