题目内容

【题目】如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E.

(1)若∠A = 40°,求∠DCB的度数.

(2)若AE=4,△DCB的周长为13,求△ABC的周长.

【答案】(1)30°(2)21

【解析】试题分析:(1)由在△ABC中,AB=AC,∠A=40°,根据等腰三角形的性质,可求得∠ACB的度数,又由线段垂直平分线的性质,可得AD=CD,即可求得∠ACD的度数,继而求得答案;
(2)由AE=4,△DCB的周长为13,即可求得△ABC的周长.

试题解析:

(1)在△ABC中 ∵AB=AC ,∠A=40°

∴∠ABC =∠ACB= =70°,

DE垂直平分AC,

DA=DC,

∴在△DAC中,∠DCA=∠A=40°,

∴∠DCB=∠ACB-∠ACD=70°-40°=30°,

(2)∵DE垂直平分AC,

DA=DCEC=EA=4,

∴AC=2AE=8,

C△ABC=ACBCBD+DA=8+BCBD+DC=8+C△CBD=8+13=21.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网