题目内容
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1 , 画出△A1B1C1;
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2 .
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.
【答案】
(1)
解:①△A1B1C1如图所示;
②△A2B2C2如图所示;
(2)
解:连接B1B2,C1C2,得到对称中心M的坐标为(2,1).
【解析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2 , C1C2 , 交点就是对称中心M.
练习册系列答案
相关题目