题目内容
【题目】如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E,与OB交于点F,连接CE,CF.
(1)求证:AB与⊙O相切.
(2)若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.
【答案】
(1)证明:连接OC,
∵在△ABO中,OA=OB,C是边AB的中点,
∴OC⊥AB,
∵OC为半径,
∴AB与⊙O相切;
(2)解:四边形OECF的形状是菱形,
理由是:
如图,取圆周角∠M,
则∠M+∠ECF=180°,
由圆周角定理得:∠EOF=2∠M,
∵∠ECF=∠EOF,
∴∠ECF=2∠M,
∴3∠M=180°,
∠M=60°,
∴∠EOF=∠ECF=120°,
∵OA=OB,
∴∠A=∠B=30°,
∴∠EOC=90°﹣30°=60°,
∵OE=OC,
∴△OEC是等边三角形,
∴EC=OE,
同理OF=FC,
即OE=EC=FC=OF,
∴四边形OECF是菱形.
【解析】(1)连接OC,根据三线合一得出OC⊥AB,根据切线判定推出即可;(2)取圆周角∠M,根据圆周角定理和圆内接四边形性质得出∠M+∠ECF=180°,∠EOF=2∠M,推出∠ECF=2∠M,求出∠M,求出∠EOF,得出等边三角形OEC,推出OE=EC,同理得出OF=FC,推出OE=OF=FC=EC,根据菱形判定推出即可.
【考点精析】利用切线的判定定理对题目进行判断即可得到答案,需要熟知切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.
练习册系列答案
相关题目