题目内容
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.
(1)求此抛物线的表达式;
(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;
(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.
【答案】(1)y=x2+4x﹣5;(2)20;(3)
【解析】
(1)根据题意可以求得a、b的值,从而可以求得抛物线的表达式;(2)根据题意可以求得AD的长和点E到AD的距离,从而可以求得△EAD的面积;(3)根据题意可以求得直线AB的函数解析式,再根据题意可以求得△ABP的面积,然后根据二次函数的性质即可解答本题.
(1)∵抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),
∴,得,
∴此抛物线的表达式是y=x2+4x﹣5;
(2)∵抛物线y=x2+4x﹣5交y轴于点A,
∴点A的坐标为(0,﹣5),
∵AD∥x轴,点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,
∴点E的纵坐标是5,点E到AD的距离是10,
当y=﹣5时,﹣5=x2+4x﹣5,得x=0或x=﹣4,
∴点D的坐标为(﹣4,﹣5),
∴AD=4,
∴△EAD的面积是:=20;
(3)设点P的坐标为(p,p2+4p﹣5),如右图所示,
设过点A(0,﹣5),点B(﹣5,0)的直线AB的函数解析式为y=mx+n,
,得,
即直线AB的函数解析式为y=﹣x﹣5,
当x=p时,y=﹣p﹣5,
∵OB=5,
∴△ABP的面积是:S=,
∵点P是直线AB下方的抛物线上一动点,
∴﹣5<p<0,
∴当p=﹣时,S取得最大值,此时S= ,点p的坐标是(-,﹣),
即点p的坐标是(-,﹣)时,△ABP的面积最大,此时△ABP的面积是.