题目内容
【题目】两个边长分别为和的正方形如图放置(图1),其未叠合部分(阴影)面积为;若再在图1中大正方形的右下角摆放一个边长为的小正方形(如图2),两个小正方形叠合部分(阴影)面积为.
(1)用含、的代数式分别表示、;
(2)若,,求的值;
(3)当时,求出图3中阴影部分的面积.
【答案】(1)S1=a2b2,S2=2b2ab(2)34(3)16
【解析】
(1)由图中正方形和长方形的面积关系,可得答案;
(2)根据S1+S2=a2b2+2b2ab=a2+b2ab,将a+b=10,ab=22代入进行计算即可;
(3)根据S3=a2+b2b(a+b)a2=(a2+b2ab)和S1+S2=a2+b2ab=32,可求得图3中阴影部分的面积S3.
(1)由图可得,S1=a2b2,S2=2b2ab.
(2)∵a+b=10,ab=22
∴S2+S2=a2b2+2b2ab
=a2+b2ab
=(a+b)23ab
=1003×22
=34
∴S1+S2的值为34.
(3)由图可得:
S3=a2+b2b(a+b)a2=(a2+b2ab)
∵S1+S2=a2+b2ab=32
∴S3=×32=16,
∴图3中阴影部分的面积S3为16.
【题目】口袋中装有四个大小完全相同的小球,把它们分别标号1,2,3,4,从中随机摸出一个球,记下数字后放回,再从中随机摸出一个球,利用树状图或者表格求出两次摸到的小球数和等于4的概率.
【答案】 .
【解析】试题分析:
根据题意列表如下,由表可以得到所有的等可能结果,再求出所有结果中,两次所摸到小球的数字之和为4的次数,即可计算得到所求概率.
试题解析:
列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表可知,共有16种等可能事件,其中两次摸到的小球数字之和等于4的有(3,1)、(2,2)和(1,3),共计3种,
∴P(两次摸到小球的数字之和等于4)=.
【题型】解答题
【结束】
23
【题目】小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.