题目内容
【题目】如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,﹣2).
(1)求此函数的关系式;
(2)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ACBD分成面积相等的两个四边形,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.
【答案】
(1)
解:∵y=x2+bx+c的顶点为(1,﹣2).
∴y=(x﹣1)2﹣2=x2﹣2x﹣1
(2)
解:设直线PE对应的函数关系式为y=kx+b,根据A,B关于对称轴对称,
可以得出AC=CB,AD=BD,点C关于x轴的对称点D,
故AC=BC=AD=BD,
则四边形ACBD是菱形,
故直线PE必过菱形ACBD的对称中心M.
由P(0,﹣1),M(1,0),
得
从而得y=x﹣1,
设E(x,x﹣1)代入y=x2﹣2x﹣1得x﹣1=x2﹣2x﹣1,
解得x1=0,x2=3,
根据题意得点E(3,2)
(3)
解:假设存在这样的点F,可设F(x,x2﹣2x﹣1),
过点F做FG⊥y轴,垂足为G点.
在Rt△POM和Rt△FGP中,
∵∠OMP+∠OPM=90°,∠FPG+∠OPM=90°,
∠OMP=∠FPG,
又∠MOP=∠PGF,
∴△POM∽△FGP
∴
∵OM=1,OP=1,
∴GP=GF,即﹣1﹣(x2﹣2x﹣1)=x,
解得x1=0,x2=1,
根据题意得F(1,﹣2)
以上各步均可逆,故点F(1,﹣2)即为所求,
S△PEF=S△MFP+S△MFE= 2×1 ×2×2=3.
【解析】(1)将顶点坐标C(1,﹣2)代入y=x2+bx+c即可求得此二次函数的关系式;(2)先求出直线PM的解析式,然后与二次函数联立即可解得点E的坐标;(3)根据三角形相似的性质先求出GP=GF,求出F点的坐标,进而求得△PEF的面积.
【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由. (计算方差的公式:s2= [ ])