题目内容

【题目】如图,一次函数y1=kx+b的图象与反比例函数y2= 的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).

(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2

【答案】
(1)解:把 A(2,3)代入y2= ,得m=6.

∴y2=

把 A(2,3)、C(8,0)代入y1=kx+b,

∴这两个函数的解析式为y1=﹣ x+4,y2=


(2)解:由题意得

解得

当x<0 或 2<x<6 时,y1>y2


【解析】(1)将A、B中的一点代入y2= ,即可求出m的值,从而得到反比例函数解析式,把 A(2,3)、C(8,0)代入y1=kx+b,可得到k、b的值;(2)根据图象可直接得到y1>y2时x的取值范围.

练习册系列答案
相关题目

【题目】如图,已知函数x>0)的图象经过点AB,点A的坐标为(12).过点AACy轴,AC1(点C位于点A的下方),过点CCDx轴,与函数的图象交于点D,过点BBECD,垂足E在线段CD上,连接OCOD

1)求△OCD的面积;

2)当BEAC时,求CE的长.

【答案】1;(2.

【解析】试题分析:(1)根据函数x>0)的图象经过点A(12),求函数解析式,再有ACy轴,AC1求出C点坐标,然后根据CDx轴,求D点坐标,从而可求CD长,最后利用三角形面积公式求出OCD的面积.

2)通过BEAC,求得B点坐标,进而求得CE.

试题解析:解:(1函数x>0)的图象经过点A(12)

,即k=2.

∵AC∥y轴,AC1C的坐标为(11.

∵ CD∥x轴,点D在函数图像上,D的坐标为(21.

.

2BEACBE.

BECDB的纵坐标是B的横坐标是.

CE=.

考点:1.反比例函数综合题;3.曲线上点的坐标与方程的关系;3.三角形的面积.

型】解答
束】
27

【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:

(其中均为整数),则有

.这样小明就找到了一种把部分的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当均为正整数时,若,用含m、n的式子分别表示,得       

(2)利用所探索的结论,找一组正整数,填空:    =(      )2

(3)若,且均为正整数,求的值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网