题目内容
【题目】已知△ABC是边长为6的等边三角形.将△ABC绕点A逆时针旋转角θ(0°θ180°)得到△ADE,BD和EC所在直线相交于点O.
(1)如图1,当0°θ60°时,∠BOC的度数是否变化?若不变,求出∠BOC的度数;若变化,直接写出∠BOC的度数的变化范围;
(2)在旋转过程中,当△BDE是直角三角形时,求BD的长;
(3)在θ从60°到120°的旋转过程中,直接写出点O运动的路径长.
【答案】(1)不变, (2) ;(3)
【解析】
(1)先证明△ABD≌△ACE,然后根据角的代换可得出∠BOC=120°;
(2)先推出∠BDA=30°,根据AB=AD=6,得出∠ABD=30°,作AM⊥BD于M,在△ABM中,∠ABM=30°,AB=6,∠BMA=90°,即可得出答;
(3)如图,AD交AE于J.设△ABC的外接圆的圆心为K.证明∠AOC=120°,推出点O的运动轨迹是K为圆心,KC半径的圆弧,圆心角为60°,即可得出答案.
解:(1)∵AD=AE,AB=AC,∠BAD+∠DAC=∠DAC+∠CAE=60°,
∴∠BAD=∠CAE,
∴△ABD≌△ACE,
∴∠AEC=∠ADB,
∵∠ADO+∠ADB=180°,
∴∠ADO+∠AEC=180°,
∴∠DAE+∠BOC=180°,
∵∠DAE=60°,
∴∠BOC=120°,
∴∠BOC的度数不变,∠BOC=120°;
(2)∵△BDE是直角三角形,
∴∠BDE=90°,
∵∠BDA+∠ADE=90°,∠ADE=60°,
∴∠BDA=30°,
∵AB=AD=6,
∴∠ABD=30°,
作AM⊥BD于M,
在△ABM中,∠ABM=30°,AB=6,∠BMA=90°,
∴BM=,
∴BD=6;
(3)如图中,AD交AE于J.设△ABC的外接圆的圆心为K,
∵△ABD≌△ACE,
∴∠ODJ=∠AEJ,
∵∠AJE=∠OJD,
∴∠EAJ=∠JOD=60°,
∴∠AOC=120°,
∴点O的运动轨迹是K为圆心,KC半径的圆弧,圆心角为60°,
∴当θ从60°到120°的旋转过程中,KC=·=,
=.
【题目】为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.
七年级20名学生的测试成绩为:
7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.
七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:
年级 | 平均数 | 众数 | 中位数 | 8分及以上人数所占百分比 |
七年级 | 7.5 | a | 7 | 45% |
八年级 | 7.5 | 8 | b | c |
八年级20名学生的测试成绩条形统计图如图:
根据以上信息,解答下列问题:
(1)直接写出上述表中的a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);
(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?