题目内容
【题目】如图,一次函数y1=x+2的图象与反比例函数y2=(k≠0)的图象交于A、B两点,且点A的坐标为(1,m).
(1)求反比例函数的表达式及点B的坐标;
(2)根据图象直接写出当y1>y2时x的取值范围.
【答案】(1)y=,B(﹣3,﹣1);(2)﹣3<x<0或x>1
【解析】
(1)把A点坐标代入一次函数解析式可求得m的值,可得到A点坐标,再把A点坐标代入反比例函数解析式可求得k的值,解析式联立,解方程即可求得B的坐标;
(2)根据图象观察直线在双曲线上方对应的x的范围即可求得.
解:(1)∵一次函数图象过A点,
∴m=1+2,解得m=3,
∴A点坐标为(1,3),
又∵反比例函数图象过A点,
∴k=1×3=3
∴反比例函数y=,
解方程组得:或,
∴B(﹣3,﹣1);
(2)当y1>y2时x的取值范围是﹣3<x<0或x>1.
练习册系列答案
相关题目
【题目】已知二次函数的与的部分对应值如表:
下列结论:抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则,其中正确的个数是( )
A.B.C.D.