题目内容
【题目】如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=____.
【答案】.
【解析】
根据正方形的性质得到AB=BC,∠ABE=∠BCF=90°,推出∠BAE=∠EBH,根据全等三角形的性质得到CF=BE=2,求得DF=5﹣2=3,根据勾股定理即可得到结论.
∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°,
∴∠BAE+∠AEB=90°,
∵BH⊥AE,
∴∠BHE=90°,
∴∠AEB+∠EBH=90°,
∴∠BAE=∠EBH,
在△ABE和△BCF中,
∴△ABE≌△BCF(ASA),
∴CF=BE=2,
∴DF=5﹣2=3,
∵四边形ABCD是正方形,
∴AB=AD=5,∠ADF=90°,
由勾股定理得:AF===.
故答案为:.
练习册系列答案
相关题目