题目内容
【题目】如图,已知点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,点P(m,0)是x轴上的任意一点,若△PAB的面积为2,此时m的值是______.
【答案】﹣1或7
【解析】
把点A(1,a)与点B(b,1)代入反比例函数y=(x>0),求出A,B坐标,延长AB交x轴于点C,如图2,设直线AB的解析式为y=mx+n,求出点C的坐标,用割补法求出PC的值,结合点C的坐标即可.
解:∵点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,
∴a=2,b=2,
∴点A(1,2)与点B(2,1),
延长AB交x轴于点C,如图2,
设直线AB的解析式为y=mx+n,
则有,
解得,
∴直线AB的解析式为y=﹣x+3.
∵点C是直线y=﹣x+3与x轴的交点,
∴点C的坐标为(3,0),OC=3,
∵S△PAB=2,
∴S△PAB=S△PAC﹣S△PBC=×PC×2﹣×PC×1=PC=2,
∴PC=4.
∵C(3,0),P(m,0),
∴|m﹣3|=4,
∴m=﹣1或7,
故答案为:﹣1或7.
练习册系列答案
相关题目