题目内容
【题目】(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,求证:∠ACD=∠B;
(2)如图②,在Rt△ABC中,∠C=90°,D、E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状?并说明理由?
(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,点C,B,E在同一直线上,若AB⊥BD,AB=BD,则CE与AC,DE有什么等量关系,并证明.
【答案】(1)证明见解析(2)直角三角形(3)CE=AC+DE
【解析】
(1)根据直角三角形的性质得出∠ACD+∠A=∠B+∠DCB=90°,再解答即可;(2)根据直角三角形的性质得出∠ADE+∠A=∠A+∠B=90°,再解答即可;(3)由AB⊥BD可得∠DBE+∠ABC=90°,进而可证明∠A=∠DBE,利用AAS可证明△ABC≌△BDE,即可证明BC=DE,AC=BE,从而可证明CE=AC+DE.
(1)∵在Rt△ABC中,∠ACB=90°,
∴∠A+∠B =90°,
∵CD⊥AB,
∴∠ACD+∠A=90°,
∴∠ACD=∠B.
(2)△ADE是直角三角形,理由如下:
∵在Rt△ABC中,∠ACB=90°,
∴∠A+∠B =90°,
∵∠ADE=∠B,
∴∠A+∠ADE=90°,
∴∠AED=90°,即△ADE得直角三角形.
(3)CE=AC+DE,证明如下:
∵点C、B、E在同一直线上,AB⊥BD,
∴∠DBE+∠ABC=90°,
∵∠A+∠ABC=90°,
∴∠A=∠DBE
∵∠C=∠E=90°,AB=BD,∠A=∠DBE,
∴△ABC≌△BDE,
∴BC=DE,AC=BE,
∴CE=CB+BE=DE+AC.
练习册系列答案
相关题目