题目内容
【题目】大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度.
【答案】解:过点B作BE⊥AD,交AD延长线于点E.
在Rt△BED中,∵D点测得塔顶B点的仰角为30°,
∴∠BDE=60度.
设DE=x,则BE= x.
在Rt△BEA中,∠BAE=30度,BE= x.
∴AE=3x.
∴AD=AE-DE=3x-x=2x=10.
∴x=5.
∴BC=AD+DE=10+5=15(米).
答:塔BC的高度为15米.
【解析】根据题意画出图形,由D点测得塔顶B点的仰角为30°,根据在直角三角形中,30度角所对的边是斜边的一半;求出塔BC的高度.
【考点精析】解答此题的关键在于理解关于仰角俯角问题的相关知识,掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.
练习册系列答案
相关题目
【题目】我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.