题目内容
【题目】在我市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,该校有几种购买方案?
(3)上面的哪种方案费用最低?按费用最低方案购买需要多少钱?
【答案】(1)每台电脑0.5万元,每台电子白板1.5万元;(2)方案一:购进电脑15台,电子白板15台;方案二:购进电脑16台,电子白板14台,方案三:购进电脑17台,电子白板13台;(3)选择方案三最省钱,即购买电脑17台,电子白板13台最省钱.需要28万元.
【解析】试题分析:(1)先设每台电脑x万元,每台电子白板y万元,根据购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元列出方程组,求出x,y的值即可;
(2)先设需购进电脑a台,则购进电子白板(30-a)台,根据需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元列出不等式组,求出a的取值范围,再根据a只能取整数,得出购买方案;
(3)根据每台电脑的价格和每台电子白板的价格,算出总费用,再进行比较,即可得出最省钱的方案.
试题解析:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:
解得:
答:每台电脑0.5万元,每台电子白板1.5万元.
(2)设需购进电脑a台,则购进电子白板(30-a)台,
则
解得:15≤a≤17,即a=15、16、17.
故共有三种方案:
方案一:购进电脑15台,电子白板15台;
方案二:购进电脑16台,电子白板14台;
方案三:购进电脑17台,电子白板13台.
(3) 方案一:总费用为万元;
方案二:总费用为万元;
方案三:总费用为万元;
所以,方案三费用最低,需28万元.