题目内容
【题目】在△ABC中,AB=BC,∠ABC=90°,D为AC中点,点P是线段AD上的一点,点P与点A、点D不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接A1B1、BB1
(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠PAA1=∠PBB1.
(2)如图②,直线AA1与直线PB、直线BB1分别交于点E,F.设∠ABP=β,当90°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图③,当α=90°时,点E、F与点B重合.直线A1B与直线PB相交于点M,直线BB′与AC相交于点Q.若AB=,设AP=x,CQ=y,求y关于x的函数关系式.
【答案】(1)证明见解析;(2)α﹣2β=90°;(3)y=.
【解析】
(1)先利用旋转得出两个顶角相等的两个等腰三角形,即可得出结论;
(2)假设存在,然后利用确定的出AE=BE,即可求出∠A1AP=∠AA1P,最后用∠BAC=45°建立方程化简即可;
(3)先判断出△ABQ∽△CPB,得出比例式即可得出结论.
解:(1)∵将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,
∴∠APA1=∠BPB1=α,AP=A1P,BP=B1P,
∴∠AA1P=∠A1AP==,∠BB1P=∠B1BP==,
∴∠PAA1=∠PBB1,
(2)假设在α角变化的过程中,存在△BEF与△AEP全等,
∵△BEF与△AEP全等,
∴AE=BE,
∴∠ABE=∠BAE=β,
∵AP=A1P,
∴∠A1AP=∠AA1P=,
∵AB=BC,∠ABC=90°,
∴∠BAC=45°,
∴β+=45°,
∴α﹣2β=90°,
(3)当α=90°时,
∵AP=A1P,BP=B1P,∠APA1=∠BPB2=90°,
∴∠A=∠PBB1=45°,
∵∠A=∠C,∠AQB=∠C+∠QBC=45°+∠QBC=∠PBC,
∴△ABQ∽△CPB,
∴,
∵AB=,
∴,
∴y=.