题目内容
【题目】如图1,线段AB、CD相交于点O,连结AC、BD,我们把形如图1的图形称之为“8字形”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥聪明才智,解决以下问题:
(1)在图1中,请写出∠A、∠B、∠C、∠D之间的数量关系,并说明理由;
(2)仔细观察,在图2中“8字形”的个数有 个;
(3)在图2中,若∠B=70°,∠C=84°,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N利用(1)的结论,试求∠P的度数;
(4)在图3中,如果∠B和∠C为任意角,并且AP和DP分别是∠CAB和∠BDC的四等分线,即∠PAO=∠CAO, ∠BDP=∠BDO,那么∠P与∠C、∠B之间存在的数量关系是 (直接写出结论即可).
【答案】(1)∠A+∠C=∠D+∠B;(2)6;(3)77°;(4)
【解析】
(1)根据三角形的内角和即可得到结论;
(2)以线段AC为边的“8字型”有3个,以点O为交点的“8字型”有4个;
(3)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C-∠P=∠P-∠B,即∠P=(∠C+∠B),然后把∠B=70°,∠C=84°代入计算即可;
(4)同(3)的步骤可求出∠P与∠C、∠B之间存在的数量关系.
(1)∠A+∠C=∠D+∠B,
∵∠A+∠C+∠AOC=∠D+∠B+∠BOD=180°,
∠AOC=∠BOD,
∴∠A+∠C=∠D+∠B;
(2)交点有点M、N各有1个,交点O有4个,所以,“8字形”图形共有6个;
(3)∵∠CAB和∠BDC的平分线AP和DP相交于点P,
∴∠CAP=∠BAP,∠BDP=∠CDP,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C-∠P=∠P-∠B,
即∠P=(∠C+∠B),
∵∠C=84°,∠B=70°
∴∠P=(∠C+∠B)=(84°+70°)=77°.
(4) ∵∠PAO=∠CAO, ∠BDP=∠BDO,
∴∠PAC=∠CAO, ∠ODP=∠BDO,
∵∠CAP+∠C=∠ODP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠CAO +∠C=∠BDO +∠P,∠CAO +∠P=∠BDO +∠B,
∴∠CAO +3∠P=∠BDO +3∠B,
∴∠C-3∠P=∠P-3∠B,
∴ .