题目内容
【题目】阅读理解并完成下面问题:
我们知道,任意一个正整数都可以进行这样的因式分解:(是正整数),在的所有这种分解中,如果两因数之差的绝对值最小,我们就称是的最佳分解.并规定:
(其中).例如:可以分解成,或,因为,所以是的最佳分解,所以.
()如果一个正整数是另外一个正整数的平方,我们称正整数是完全平方数,若是一个完全平方数,求的值;
()如果一个两位正整数,交换其个位数字与十位数字得到的新两位数减去原数所得的差为,那么我们称这个两位正整数为“吉祥数”,求符合条件的所有“吉祥数”;
()在()中的所有“吉祥数”中,求的最小值.
【答案】(1)1;(2)可取,,,,,,;(3)
【解析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;
(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;
(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最小值即可.
()∵是完全平方数
∴ 且
∴
()设正整数,则,则.
∵.
.
.
∴可取,,,,,,.
()由()得.
∴,,,,,,.
∵.
∴的最小值为.
练习册系列答案
相关题目