题目内容
【题目】在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2 .
【答案】126或66
【解析】解:当∠B为锐角时(如图1),
在Rt△ABD中,
BD= = =5cm,
在Rt△ADC中,
CD= = =16cm,
∴BC=21,
∴S△ABC= = ×21×12=126cm2;
当∠B为钝角时(如图2),
在Rt△ABD中,
BD= = =5cm,
在Rt△ADC中,
CD= = =16cm,
∴BC=CD﹣BD=16﹣5=11cm,
∴S△ABC= = ×11×12=66cm2 ,
故答案为:126或66.
此题分两种情况:∠B为锐角或∠B为钝角已知AB、AC的值,利用勾股定理即可求出BC的长,利用三角形的面积公式得结果.
练习册系列答案
相关题目