题目内容
【题目】若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-=0,x2+6x-27=0,x2+4x+4=0都是“偶系二次方程”.判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由.
【答案】不是,理由见解析
【解析】
求出原方程的根,再代入|x1|+|x2|看结果是否为2的整数倍就可以得出结论;
不是.理由如下:
解方程x2+x-12=0,得x1=-4,x2=3.
|x1|+|x2|=4+3=2×|3.5|.
∵3.5不是整数,
∴方程x2+x-12=0不是“偶系二次方程”.

练习册系列答案
相关题目