题目内容

【题目】如图,点P为正方形ABCD的边CD上一点,BP的垂直平分线EF分别交BC、AD于E、F两点,GP⊥EP交AD于点G,连接BG交EF于点 H,下列结论:①BP=EF;②∠FHG=45°;③以BA为半径⊙B与GP相切;④若G为AD的中点,则DP=2CP.其中正确结论的序号是(  )

A. ①②③④ B. 只有①②③ C. 只有①②④ D. 只有①③④

【答案】A

【解析】

试题分析:结论正确.如下图1:过点,易用,所以;结论正确.如图2:过点于点,先利用同角的余角相等得,继而证,所以,所以

的基础上易得出,所以;结论正确,在的基础上易得,即点的距离等于的半径,所以相切;结论正确,在的基础上易得出,当的中点时,设;则.由勾股定理得:,即:,解得:,所以

,故选.

1 2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网