题目内容

【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.
(1)求证:AD=AF;
(2)试判断四边形ABNE的形状,并说明理由.

【答案】
(1)证明:∵AB=AC,∠BAC=90°,

∴∠ABC=∠ACB=45°,

∴∠ABF=135°,

∵∠BCD=90°,

∴∠ABF=∠ACD,

∵CB=CD,CB=BF,∴BF=CD,

在△ABF和△ACD中,

∴△ABF≌△ACD(SAS),

∴AD=AF


(2)解:四边形ABNE是正方形;理由如下:

证明:由(1)知,AF=AD,△ABF≌△ACD,

∴∠FAB=∠DAC,

∵∠BAC=90°,

∴∠EAB=∠BAC=90°,

∴∠EAF=∠BAD,

在△AEF和△ABD中,

∴△AEF≌△ABD△AEF≌△ABD(SAS),

∴BD=EF;

∵CD=CB,∠BCD=90°,

∴∠CBD=45°,

∵∠EAB=90°,△AEF≌△ABD,

∴∠AEF=∠ABD=90°,

∴四边形ABNE是矩形,

又∵AE=AB,

∴四边形ABNE是正方形


【解析】(1)由等腰直角三角形的性质得出∠ABC=∠ACB=45°,求出∠ABF=135°,∠ABF=∠ACD,证出BF=CD,由SAS证明△ABF≌△ACD,即可得出AD=AF;(2)由全等三角形的性质得出得出∠AEF=∠ABD=90°,证出四边形ABNE是矩形,由AE=AB,即可得出四边形ABNE是正方形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网