题目内容
【题目】如图,已知正方形的边长为,点是边上的一个动点,连接,过点作的垂线交于点,以为边作正方形,顶点在线段上,对角线、相交于点.(1)若,则 ;
(2)①求证:点一定在的外接圆上;
②当点从点运动到点时,点也随之运动,求点经过的路径长;
(3)在点从点到点的运动过程中,的外接圆的圆心也随之运动,求该圆心到边的距离的最大值.
【答案】(1);(2)①见解析;②2;(3) .
【解析】(1)根据正方形的性质得到∠A=∠B=∠EPG=90°,PF⊥EG,然后根据垂直的性质和直角三角形的两锐角互余的性质得到∠AEP=∠BPC,再根据两角对应相等的两三角形相似证得△APE∽△BCP,最后根据相似三角形的对应边成比例求解即可;
(2)①证明A、P、O、E四点共圆,即可得出结论;
②连接OA、AC,由勾股定理得到AC的长,由圆周角定理得出∠OAP=∠OEP=45°,点O在AC上,当点P运动到点B时,O为AC 的中点,即可求解;
(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得到MN=AE,设AP=x,则BP=4-x,由(1)中的相似三角形的性质:对应边成比例,求出AE= x-x2=-(x-2)2+1,由二次函数的最值求出AE的最大值为1,然后可求MN的值.
(1)解:∵四边形ABCD、四边形PEFG是正方形,
∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
∴∠AEP=∠BPC,
∴△APE∽△BCP,
∴,即,
解得:AE=;
(2)①证明:∵PF⊥EG,
∴∠EOP=90°,
∴∠EOP+∠A=180°,
∴A、P、O、E四点共圆,
∴点O一定在△APE的外接圆上;
②解:连接OA、AC,如图1所示:
∵四边形ABCD是正方形,
∴∠B=90°,∠BAC=45°,
∴AC=,
∵A、P、O、E四点共圆,
∴∠OAP=∠OEP=45°,
∴点O在AC上,
当P运动到点B时,O为AC的中点,OA=AC=2,
即点O经过的路径长为2;
(3)解:设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:
则MN∥AE,
∵ME=MP,
∴AN=PN,
∴MN=AE,
设AP=x,则BP=4-x,
由(1)得:△APE∽△BCP,
∴,即,
解得:AE=x-x2=-(x-2)2+1,
∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.