题目内容

【题目】如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(  )

A. 4﹣2 B. 3﹣4 C. 1 D.

【答案】A

【解析】

根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.

在正方形ABCD,ABD=ADB=45°,

∵∠BAE=22.5°,

∴∠DAE=90°BAE=90°22.5°=67.5°,

ADE,AED=180°45°67.5°=67.5°,

∴∠DAE=AED

AD=DE=4,

∵正方形的边长为4,

BD=4

BE=BDDE=44,

EFAB,ABD=45°,

BEF是等腰直角三角形,

EF=BE=×(44)=42.

故选A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网