题目内容

【题目】如图,在△ABC,∠A=36°,∠B=72°,AC的垂直平分线分别交AC、AB于点D,E,则图中等腰三角形的个数为(  )

A.2个
B.3个
C.4个
D.5个

【答案】B
【解析】解:∵∠A=36°,∠B=72°,
∴∠ACB=180°﹣36°﹣72°=72°,
∴∠ACB=∠B,
∴AB=AC,
∴△ABC是等腰三角形,
∵DE垂直平分AC,
∴EA=EC,
∴∠ACE=∠A=36°.
∴AE=CE,
∴△ACE是等腰三角形,
∴∠AEC=180°﹣36°﹣36°=108°,
∴∠BEC=72°.
∴∠BEC=∠B,
∴CE=BC.
∴△BEC是等腰三角形,
∴等腰三角形有△ABC,△ABE,△BEC,
故选:B.
根据∠A=36°,∠B=72°利用三角形内角和定理求出∠ACB=72°,故可得AB=AC,利用由DE垂直平分AB,求出∠ACE的度数,然后可得∠BEC=∠B,同理即可证明:△ABE,△BEC是等腰三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网