题目内容

【题目】如图,已知矩形ABCD的两条对角线相交于点O,过点A作AG⊥BD分别交BD、BC于点G、E.
(1)求证:BE2=EGEA;
(2)连接CG,若BE=CE,求证:∠ECG=∠EAC.

【答案】
(1)证明:∵四边形ABCD是矩形,

∴∠ABC=90°,

∵AE⊥BD,

∴∠ABC=∠BGE=90°,

∵∠BEG=∠AEB,

∴△ABE∽△BGE,

∴BE2=EGEA


(2)证明:由(1)证得BE2=EGEA,

∵BE=CE,

∴CE2=EGEA,

=

∵∠CEG=∠AEC,

∴△CEG∽△AEC,

∴∠ECG=∠EAC


【解析】(1)由四边形ABCD是矩形,得到∠ABC=90°,得到∠ABC=∠BGE=90°,根据相似三角形的性质即可得到结论;(2)由(1)证得BE2=EGEA,推出△CEG∽△AEC,根据相似三角形的性质即可得到结论.
【考点精析】本题主要考查了矩形的性质和相似三角形的判定与性质的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网