题目内容
【题目】某商场经营某种品牌的玩具,进价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是500件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>30),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元) | x |
销售量y(件) | |
销售玩具获得利润w(元) |
(2)在(1)问条件下,若商场获得了8000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于35元,且商场要完成不少于350件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
【答案】
(1)解:根据题意,知:销售单价为x元时,销售量y=500﹣10(x﹣30)=﹣10x+800,
则销售玩具的利润w=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000,
完成表格如下:
销售单价(元) | x |
销售量y(件) | ﹣10x+800 |
销售玩具获得利润w(元) | ﹣10x2+1000x﹣16000 |
(2)解:当w=8000时,有﹣10x2+1000x﹣16000=8000,
解得:x=60或x=40,
答:该玩具销售单价x应定为40元或60元
(3)解:由题意知, ,
解得:35≤x≤45,
∵w=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000,
∴当x<50时,w随x的增大而增大,
∴当x=45时,w取得最大值,最大值为8750元.
答:商场销售该品牌玩具获得的最大利润是8750元
【解析】(1)根据“销售量=原销量﹣因价格上涨而减少的销售量”、“总利润=单件利润×销售量”可得函数解析式;(2)求出w=8000时x的值即可得;(3)先根据“销售单价不低于35元,且商场要完成不少于350件的销售任务”求得x的范围,再将w=﹣10x2+1000x﹣16000配方成顶点式,利用二次函数的性质求解可得.
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)根据题意,填写下表:
重量(千克) | 0.5 | 1 | 3 | 4 | … |
甲公司 | 22 | 67 | … | ||
乙公司 | 11 | 51 | … |
(2)请分别写出甲乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(3)小明应选择哪家快递公司更省钱?