题目内容
【题目】如图,一块等腰三角形钢板的底边长为,腰长为
.
(1)求能从这块钢板上截得的最大圆的半径;
(2)用一个圆完整覆盖这块钢板,这个圆的最小半径是多少?
【答案】(1)cm;(2)40cm.
【解析】
(1)由于三角形ABC是等腰三角形,过A作AD⊥BC于D,那么根据勾股定理得到AD=30,又从这块钢板上截得的最大圆就是三角形的内切圆,根据内切圆的圆心的性质知道其圆心在AD上,分别连接AO、BO、CO,然后利用三角形的面积公式即可求解;
(2)由于一个圆完整覆盖这块钢板,那么这个圆是三个三角形的外接圆,设覆盖圆的半径为R,根据垂径定理和勾股定理即可求解
解:(1)如图,过A作AD⊥BC于D
∵AB=AC=50,BC=80
∴根据等腰三角形三线合一的性质及勾股定理可得
AD=30,BD=CD=40,
设最大圆半径为r,
则S△ABC=S△ABO+S△BOC+S△AOC,
∴S△ABC=×BC×AD=
(AB+BC+CA)r
×80×30=
(50+80+50)r
解得:r=cm ;
(2)设覆盖圆的半径为R,圆心为O′,
∵△ABC是等腰三角形,过A作AD⊥BC于D,
∴BD=CD=40,AD= ,
∴O′在AD直线上,连接O′C,
在Rt△O′DC中,
由R2=402+(R-30)2,
∴R=;
若以BD长为半径为40cm,也可以覆盖,
∴最小为40cm.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:
班级 | 平均分 | 中位数 | 方差 |
甲班 | |||
乙班 |
数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:
这次数学测试成绩中,甲、乙两个班的平均水平相同;
甲班学生中数学成绩95分及以上的人数少;
乙班学生的数学成绩比较整齐,分化较小.
上述评估中,正确的是______填序号