题目内容
【题目】请在下列横线上注明理由.
如图,在中,点,,在边上,点在线段上,若,,点到和的距离相等.求证:点到和的距离相等.
证明:∵(已知),
∴(______),
∴(______),
∵(已知),
∴(______),
∵点到和的距离相等(已知),
∴是的角平分线(______),
∴(角平分线的定义),
∴(______),
即平分(角平分线的定义),
∴点到和的距离相等(______).
【答案】同位角相等,两直线平行;两直线平行,同位角相等;两直线平行,同位角相等;角的内部到角的两边距离相等的点在角的平分线上;等量代换;角平分线上的点到角的两边的距离相等.
【解析】
根据角平分线的性质及平行线的性质与判定即可解答.
证明:∵∠PFD=∠C(已知),
∴PF∥AC(同位角相等,两直线平行),
∴∠DPF=∠DAC(两直线平行,同位角相等).
∵PE∥AB(已知),
∴ ∠EPD=∠BAD(两直线平行,同位角相等).
∵点 D到PE和PF的距离相等(已知),
∴ PD是 ∠EPF的角平分线(角的内部到角的两边距离相等的点在角的平分线上),
∴ ∠EPD=∠FPD(角平分线的定义),
∴∠BAD=∠DAC (等量代换),
即AD平分∠BAC (角平分线的定义),
∴点D到AB和AC的距离相等(角平分线上的点到角的两边的距离相等)
练习册系列答案
相关题目