题目内容
【题目】如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)
(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;
(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.
【答案】(1)见解析,(2,﹣3);
(2)见解析,1.5.
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用位似图形的性质得出对应点位置进而结合三角形面积求法得出答案.
解:(1)如图所示:△A1B1C1,即为所求;
点B1的坐标为:(2,﹣3);
(2)如图所示:△A2B2C2,即为所求;
点C2的坐标为:(﹣2,﹣3);
△A2B2C2的面积为:4﹣×1×1﹣×1×2﹣×1×2=1.5.
.
练习册系列答案
相关题目