题目内容
【题目】如图,公路MN为东西走向,在点M北偏东36.5°方向上,距离5千米处是学校A;在点M北偏东45°方向上距离千米处是学校B.(参考数据:,).
(1)求学校A,B两点之间的距离
(2)要在公路MN旁修建一个体育馆C,使得A,B两所学校到体育馆C的距离之和最短,求这个最短距离.
【答案】(1)km;(2)km.
【解析】
(1)过点A作CD//MN,BE⊥MN,在Rt△ACM中求出CM,AC,在Rt△MBE中求出BE,ME,继而得出AD,BD的长度,在Rt△ABD中利用勾股定理可得出AB的长度.
(2)作点B关于MN的对称点G,连接AG交MN于点P,点P即为站点,求出AG的长度即可.
(1)过点A作CD//MN,BE⊥MN,如图:
在Rt△ACM中,∠CMA=36.5°,AM=5km,
∵sin36.5°==0.6,
∴CA=3,MC=4km,
在Rt△MBE中,∠NMB=45°,MB=km,
∵sin45°==,
∴BE=6,ME=6km,
∴AD=CDCA=MECA=3km,BD=BEDE=BECM=2km,
在Rt△ABD中,AB=km.
(2)作点B关于MN的对称点G,连接AG交MN于点P,连接PB,点P即为站点,
此时PA+PB=PA+PG=AG,即A,B两所学校到体育馆C的距离之和最短为AG长
在Rt△ADG中,AD=3,DG=DE+EG=DE+BE=4+6=10,∠ADG=90°,
∴AG==km.
答:最短距离为km.
练习册系列答案
相关题目