题目内容
【题目】已知∠AOB=90°,OC为一条射线,OE,OF分别平分∠AOC,∠BOC,那么∠EOF 的度数为_____________.
【答案】45°或135°
【解析】
解答此题首先进行分类讨论,当OC是∠AOB里的一条射线时,根据题干条件求出一个值,当OC是∠AOB外的一条射线时,根据平分线的知识可以得到角之间的关系,进而求得∠EOF的大小.
解:①OC在∠AOB内部,
如图所示:
∵OE,OF分别平分∠AOC和∠BOC,∴∠COE=∠AOC,∠COF=∠BOC,
∴∠COE+∠COF=∠AOC+∠BOC,
即∠EOF=∠AOB,
又∵∠AOB=90°,
∴∠EOF=45°;
②如图,
当OC在∠AOB外部时,
∵OE,OF分别平分∠AOC和∠BOC,
∴∠AOE=∠EOC=∠AOC,∠BOF=∠FOC=∠BOC,
∴∠EOF=∠EOC+∠FOC=(360°90°)÷2,
∴∠EOF=135°,
综上所述:∠EOF=45°或135°.
故答案为:45°或135°.
练习册系列答案
相关题目