题目内容
【题目】有一条抛物线,三位学生分别说出了它的一些性质:
甲说:对称轴是直线x=2;
乙说:与x轴的两个交点距离为6;
丙说:顶点与x轴的交点围成的三角形面积等于9,请你写出满足
上述全部条件的一条抛物线的解析式: .
【答案】y=﹣ (x﹣2)2+3或y= (x﹣2)2﹣3.
【解析】解:根据题意得:抛物线与x轴的两个交点的坐标为(﹣1,0),(5,0),顶点坐标为(2,3)或(2,﹣3),
设函数解析式为y=a(x﹣2)2+3或y=a(x﹣2)2﹣3;
把点(5,0)代入y=a(x﹣2)2+3得a=﹣ ;
把点(5,0)代入y=a(x﹣2)2﹣3得a= ;
∴满足上述全部条件的一条抛物线的解析式为y=﹣ (x﹣2)2+3或y= (x﹣2)2﹣3.
根据对称轴是直线x=2,与x轴的两个交点距离为6,所以与x轴的两个交点的坐标为(-1,0),(5,0),再根据顶点与x轴的交点围成的三角形面积等于9,可得顶点的纵坐标为±3,得顶点坐标为(2,3)或(2,-3),然后利用顶点式求得抛物线的解析式即可。
练习册系列答案
相关题目
【题目】在一个不透明的盒子中装有颜色不同的8个小球,其中红球3个,黑球5个.
(1)先从袋中取出m(m>1)个红球,再从袋中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:
事件A | 必然事件 | 随机事件 |
m的值 |
(2)先从袋中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率是,求m的值.