题目内容
用换元法解方程x2-3x+
=4时,设y=x2-3x,则原方程可化为( )
| 3 |
| x2-3x |
A、y+
| ||
B、y-
| ||
C、y+
| ||
D、y+
|
分析:换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是x2-3x,设x2-3x=y,换元后整理即可求得.
解答:解:设x2-3x=y,
则原方程可化为:
y+
=4.
即:y+
-4=0.
故选A.
则原方程可化为:
y+
| 3 |
| y |
即:y+
| 3 |
| y |
故选A.
点评:本题考查了用换元法解方程,解题关键是能准确的找出可用替换的代数式x2+x,再用字母y代替原方程.
练习册系列答案
相关题目
用换元法解方程x2+2x-
=8,若设x2+2x=y,则原方程可化为( )
| 20 |
| x2+2x |
| A、y2-8y-20=0 |
| B、8y2-20y+1=0 |
| C、y2+8y-20=0 |
| D、20y2+8y-1=0 |
下列说法或解法正确的个数有( )
(1)用换元法解方程x2+x+1=
,设y=x2+x,则原方程可化为y+1=
;
(2)平分弦的半径垂直于弦,并且平分弦所对的一条弧;
(3)平面直角坐标系内的点与实数一一对应;
(4)“对顶角相等”的逆命题是真命题
(1)用换元法解方程x2+x+1=
| 2 |
| x2+x |
| 2 |
| y |
(2)平分弦的半径垂直于弦,并且平分弦所对的一条弧;
(3)平面直角坐标系内的点与实数一一对应;
(4)“对顶角相等”的逆命题是真命题
| A、1个 | B、2个 | C、3个 | D、4个 |
用换元法解方程
-
=3时,下列换元方法中最适宜的是( )
| x2+1 |
| x+1 |
| 2x+2 |
| x2+1 |
| A、x2+1=y | ||
B、
| ||
C、
| ||
D、
|