题目内容

【题目】如图,AB是⊙O的直径,C、G是⊙O上两点,且C是弧AG的中点,过点C的直线CD⊥BG的延长线于点D,交BA的延长线于点E,连接BC,交OD于点F.

(1)求证:CD是⊙O的切线;

(2)若,求证:AE=AO;

(3)连接AD,在(2)的条件下,若CD=2,求AD的长.

【答案】(1)证明见解析(2)∠E=30°;(3)

【解析】

试题分析:(1)如图1,连接OC,AC,CG,由圆周角定理得到∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC∥BG,即可得到结论;

(2)由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,得到,根据直角三角形的性质即可得到结论;

(3)如图2,过A作AH⊥DE于H,解直角三角形得到BD=6,DE=6,BE=12,在Rt△DAH中,AD=,求出答案即可.

试题解析:(1)如图1,连接OC,AC,CG,

∵AC=CG,

∴∠ABC=∠CBG,

∵OC=OB,

∴∠OCB=∠OBC,

∴∠OCB=∠CBG,

∴OC∥BG,

∵CD⊥BG,

∴OC⊥CD,

∴CD是⊙O的切线;

(2)∵OC∥BD,

∴△OCF∽△BDF,△EOC∽△EBD,

∵OA=OB,

∴AE=OA=OB,

∴OC=OE,

∵∠ECO=90°,

∴∠E=30°;

(3)如图2,过A作AH⊥DE于H,

∵∠E=30°

∴∠EBD=60°,

∴∠CBD=∠EBD=30°,

∵CD=2

∴BD=6,DE=6,BE=12,

∴AE=BE=4,

∴AH=2,

∴EH=2

∴DH=4

在Rt△DAH中,AD==2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网