题目内容
【题目】已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.
(1)求证:CB2=ABDB;
(2)若⊙O的半径为2,∠BCP=30°,求图中阴影部分的面积.
【答案】(1)证明见解析;
(2)阴影部分的面积=
【解析】试题分析:(1)由CP是 ⊙O的切线,得出∠BCD=∠BAC,AB是直径,得出∠ACB=90°,所以∠ACB=∠CDB=90°,得出结论△ACB∽△CDB,从而得出结论;
(2)求出△OCB是正三角形,阴影部分的面积=S扇形OCB-S△OCB=.
试题解析:
(1)提示:先证∠ACB=∠CDB=90°,
再证∠BAC=∠BCD,
得△ACB∽△CDB,
∴
(2)解:如图,连接OC,
∵直线CP是⊙O的切线,∠BCP=30°,
∴∠COB=2∠BCP=60°,
∴△OCB是正三角形,
∵⊙O的半径为2,
∴S△OCB=,S扇形OCB= ,
∴阴影部分的面积=S扇形OCB-S△OCB=.
练习册系列答案
相关题目