题目内容

【题目】如图,在平面直角坐标系中,点A、B、C、E、P均在坐标轴上,A(0,3)、B(﹣4,0)、P(0,﹣3),点C是线段OP(不包含O、P)上一动点,AB∥CE,延长CE到D,使CD=BA

(1)如图,点M在线段AB上,连MD,∠MAO与∠MDC的平分线交于N.若∠BAO=α,∠BMD=130°,则∠AND的度数为
(2)如图,连BD交y轴于F.若OC=2OF,求点C的坐标
(3)如图,连BD交y轴于F,在点C运动的过程中, 的值是否变化?若不变,求出其值;若变化,请说明理由.

【答案】
(1)
α+25°
(2)

解:如图2中,

∵AB∥CD,

∴△AFB∽△CFD,

= ,∵AB=CD,

∴AF=FC,

∵OC=2OF,设OF=a,则OC=2a,FC=AF=3a,OA=4a,

∴4a=3,

∴a=

∴OC=2a=

∴C(0,﹣


(3)

解:结论: 的值不变.理由如下:

如图2中,∵AB∥CD,

∴△AFB∽△CFD,

= ,∵AB=CD,

∴AF=FC,设OF=m,则AF=3﹣m,OC=3﹣m﹣m=3﹣2m,

= = =2,

的值不变


【解析】解:(1)如图1中,作NG∥AB.

∵AB∥CD,NG∥AB,
∴AB∥NG∥CD,
∴∠ANG=∠BAN,∠DNG=∠NDC,
∵∠NAB= ∠BAO,∠NDC= ∠MDC,
∴∠AND=∠ANG+∠DNG= ∠BAO+ ∠MDC,
∵∠BAO=α,∠MDC=180°﹣∠BMD=180°﹣130°=50°,
∴∠AND= α+25°,
所以答案是 α+25°;
【考点精析】关于本题考查的角平分线的性质定理和相似三角形的判定与性质,需要了解定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网