题目内容

【题目】如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD的面积为12,则BP的长为

【答案】
【解析】解:如图,作PF⊥BC于点F,延长FP交AD于点E,
∵AD∥BC,
∴∠PFC=∠DEP=90°,
∴∠CPF+∠PCF=90°,
∵∠DPC=90°,
∴∠CPF+∠DPE=90°,
∴∠PCF=∠DPE,
在△PCF和△DPE中,

∴△PCF≌△DPE(AAS),
∴PF=DE、PE=CF,
设PF=DE=x,则PE=CF=4﹣x,
∵S四边形ABCD= (AD+BC)AB=12,
×(AD+4)×4=12,解得AD=2,
∴AE=BF=2﹣x,
∴FC=BC﹣BF=4﹣(2﹣x)=2+x,
可得2+x=4﹣x,解得x=1,
∴BP= =
所以答案是:
【考点精析】掌握等腰直角三角形是解答本题的根本,需要知道等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网