题目内容

【题目】如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.
(1)求证:△ABD≌△ECB;
(2)若∠ABD=30°,BE=3,求弧CD的长.

【答案】
(1)证明:∵∠A=90°,CE⊥BD,

∴∠A=∠BEC=90°.

∵BC∥AD,

∴∠ADB=∠EBC.

∵将斜边BD绕点B顺时针方向旋转至BC,

∴BD=BC.

在△ABD和△ECB中,

∴△ABD≌△ECB


(2)解:∵△ABD≌△ECB,

∴AD=BE=3.

∵∠A=90°,∠BAD=30°,

∴BD=2AD=6,

∵BC∥AD,

∴∠A+∠ABC=180°,

∴∠ABC=90°,

∴∠DBC=60°,

∴弧CD的长为 =2π


【解析】(1)因为这两个三角形是直角三角形,根据旋转的性质得出BC=BD,由AD∥BC推出∠ADB=∠EBC,从而能证明△ABD≌△ECB;(2)由全等三角形的性质得出AD=BE=3.根据30°角所对的直角边等于斜边的一半得出BD=2AD=6,根据平行线的性质求出∠DBC=60°,再代入弧长计算公式求解即可.
【考点精析】根据题目的已知条件,利用弧长计算公式和旋转的性质的相关知识可以得到问题的答案,需要掌握若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网