题目内容
【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积S△MCB .
(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.
【答案】
(1)
解:∵二次函数y=ax2+bx+c的图象经过A(﹣1,0),C(0,5),(1,8),
则有: ,
解得 .
∴抛物线的解析式为y=﹣x2+4x+5
(2)
解:令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,
∴B(5,0).
由y=﹣x2+4x+5=﹣(x﹣2)2+9,得顶点M(2,9)
如图1中,作ME⊥y轴于点E,
可得S△MCB=S梯形MEOB﹣S△MCE﹣S△OBC= (2+5)×9﹣ ×4×2﹣ ×5×5=15
(3)
解:存在.如图2中,
∵OC=OB=5,
∴△BOC是等腰直角三角形,
①当C为直角顶点时,N1(﹣5,0).
②当B为直角顶点时,N2(0,﹣5).
③当N为直角顶点时,N3(0,0).
综上所述,满足条件的点N坐标为(0,0)或(0,﹣5)或(﹣5,0)
【解析】(1)把A(﹣1,0),C(0,5),(1,8)三点代入二次函数解析式,解方程组即可.(2)先求出M、B、C的坐标,根据S△MCB=S梯形MEOB﹣S△MCE﹣S△OBC即可解决问题.(3)分三种情①C为直角顶点;②B为直角顶点;③N为直角顶点;分别求解即可.
【考点精析】掌握二次函数的图象和二次函数的性质是解答本题的根本,需要知道二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.