题目内容

【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.求证:

(1)△AEF≌△BEC;
(2)四边形BCFD是平行四边形.

【答案】
(1)证明∵E是AB中点,∴AE=BE,

∵△ABD是等边三角形,

∴∠DAB=60°,

∵∠CAB=30°,∠ACB=90°,

∴∠ABC=60°,

在△AEF和△BEC中

∴△AEF≌△BEC(ASA)


(2)证明∵∠DAC=∠DAB+∠BAC,∠DAB=60°,∠CAB=30°,

∴∠DAC=90°,

∴AD∥BC,

∵E是AB的中点,∠ACB=90°,

∴EC=AE=BE,

∴∠ECA=30°,∠FEA=60°,

∴∠EFA=∠BDA=60°,

∴CF∥BD,

∴四边形BCFD是平行四边形.


【解析】(1)利用等边三角形的性质得出∠DAB=60°,即可得出∠ABC=60°,进而求出△AEF≌△BEC(ASA);(2)利用平行线的判定方法以及直角三角形的性质得出CF∥BD,进而求出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网